

Quantifying the Impact of Increasing Model Resolution on Aerosol Simulations

Yan Feng, Hailong Wang, Richard Easter, Wuyin Lin, Kai Zhang, Po-Lun Ma, Qi Tang, Phil Rasch, Shaocheng Xie, Jasper Kok, Douglas Hamilton and Natalie Mahowald

Motivation

Development of high-resolution Earth System Models requires re-calibration of "resolution-dependent" aerosols, because of their dependency on sub-grid parameters and processes

EAM model resolution (1° or 0.25°, 72 layers)

Increasing horizontal resolution: effect on surface wind speed

Horizontal resolution	1°	0.25° (same emis. factor)	0.25°(emis. scaled)	
Global emission $^{\sim}U_{10}^{3}$ (Tg/yr)	4702	6044	4950	
Burden (Tg)	22.9	34.3	28.5	
Dry deposition rate (1/day)	0.43	0.35	0.34	
Wet deposition rate (1/day)	0.12	0.13	0.13	

Emissions (g/m²/yr)

After scaling, same on the global emissions and different on the regional scale

Horizontal resolution	1°	0.25° (same emis. factor)	0.25°(emis. scaled)	
Global emission $^{\sim}U_{10}^{3}$ (Tg/yr)	4702	6044	4950	
Burden (Tg)	22.9	34.3	28.5	4
Dry deposition rate (1/day)	0.43	0.35	0.34	
Wet deposition rate (1/day)	0.12	0.13	0.13	

Burden (g/m²)

With the same global emissions, burden is higher with increase of model resolution

Horizontal resolution	1°	0.25° (same emis. factor)	0.25°(emis. scaled)
Global emission $^{\sim}U_{10}^{3}$ (Tg/yr)	4702	6044	4950
Burden (Tg)	22.9	34.3	28.5
Dry deposition rate (1/day)	0.43	0.35	0.34
Wet deposition rate (1/day)	0.12	0.13	0.13

Gravitational settling: 75% — 78% — stronger turbulence mixing

Horizontal resolution	1°	0.25° (same emis. factor)	0.25°(emis. scaled)
Global emission $\sim U_{10}^3$ (Tg/yr)	4702	6044	4950
Burden (Tg)	22.9	34.3	28.5
Dry deposition rate (1/day)	0.43	0.35	0.34
Wet deposition rate (1/day)	0.12	0.13	0.13

Contribution to total deposition: 22% —— Increased wet removal fraction

Impact on dust aerosol optical depth

With about the same global emissions, increase of horizontal resolution (by 4x) leads to higher dust burden (+25%) and AOD (+15%), due to a weaker dry deposition (-21%) and slightly enhanced wet deposition efficiencies

Dust Aerosol Optical Depth (AOD)

On the regional scale:

- higher dust AODs predicted over source regions, and lower AODs predicted associated with tropical deep convection and in mid- and high- latitudes;
- Larger contribution to total AOD from coarse-mode dust (0.017 to 0.02)

Comparison of dust AOD with AERONET

Dust AOD (1°x1°)

AERONET data are inserted on top by filled circles

■ The high res (0.25°) model improves the mean dust AOD averaged over all the sites and in the C. Asia

Low res (filled circle) and high res (triangle)

Pagion (n)	Dust AOD at AERONET sites						
Region (n)	AERONET	Low (1°)	High (0.25°)				
N Africa (19)	0.37	0.27	0.27				
C Asia (13)	0.34	0.20	0.26				
E Asia (1)	0.11	0.11	0.12				
S Africa/S America (2)	0.15	0.04	0.03				
Australia (1)	0.04	0.16	0.27				
All sites (36)	0.33 (0.34±0.16)	0.22 (0.24±0.12)	0.25 (0.24±0.14)				

Comparison of dust deposition with observations

Dust deposition (1°x1°)

Observations (Albani et al., 2014) are inserted on top by filled circles

- Both resolutions overestimate compared with the observations
- The high res is better over the remote oceans;
- These overestimations suggest that the model emissions are 'tuned' up too high to match AOD - what causes the AOD low bias?

_ , , ,		Dust depositio	n
Region (n)	AERONET	Low (1°)	High (0.25°)
N Africa/Atlantic (27)	12	26	32
Europe (13)	6.4	5.5	4.5
Arabian Sea (7)	17	17	23
E. Asia/N Pacific (23)	14	24	31
S Atlantic (6)	7.7	5.4	6.8
S Pacific (13)	1.5	0.7	1.6
Antarctica (15)	0.003	0.015	0.026
All sites (108)	8.3 (2.5±24)	14 (4±35)	17 (3.8±48)

Increasing vertical resolution: enhances dust dry deposition and reduces life time

		EAM	(1°)	CAM5* (1.9°)	AeroCom*
	Vertical	72 layers	30 layers	30 layers	Variable
	Global emission (Tg/yr)	4271	4173	3122	1840
>	Dry deposition rate (1/day)	0.42	0.29	0.24	0.23
	Wet deposition rate (1/day)	0.13	0.13	0.14	0.08
	Burden (Tg)	21.6	28.3	22.4	-
	Lifetime (day)	1.8	2.4	2.6	4.14

^{*}CAM5 (Liu et al., 2012); AeroCom II (Huneeus et al., 2011)

- Dry deposition efficiency in EAM is enhanced (+45%) with the number of vertical layers increased from 30 to 72, while wet deposition is about the same;
- EAM inherits the strong wet deposition from CAM5, which results in a much shorter life time of dust than the AeroCom model median;
- With the same vertical grid spacing, dry deposition in EAM is stronger than CAM5,
 due to the aerosol re-suspension effect implemented

Vertical distribution of dust aerosols

Direct radiative effect of dust

Size distr. at emiss.	t	Т	TOA (W/m2)		A	ATM (W/m2)			Surface (W/m2)			
	emiss.	Optics	AOD	SW	LW	NET	SW	LW	NET	SW	LW	NET
Low res (April)	Kok (2011)	AERONET	0.035	-0.65	0.14	-0.51	0.95	-0.6	0.35	-1.6	0.74	-0.86
High res(April)	Kok (2011)	AERONET	0.031	-0.60	0.14	-0.45	0.87	-0.59	0.29	-1.47	0.73	-0.74

Conclusions

- Global AODs in both low and high res models are consistent with other model estimates and AERONET data, constraining the global mean energy balance.
- Increase of 30 vertical layers to 72 layers leads to over-deposition and weaker vertical transport. For dust, dry deposition efficiency increases by 45%. Impact on wet deposition is negligible for dust
- For resolution-dependent aerosol sources, increase of horizontal resolution improves dust AOD comparison near source regions especially in C. Asia by better resolving the topography.
- Increase of model horizontal resolution (4x) reduces dry deposition efficiency (-21%) by increasing turbulence mixing. Wet deposition is enhanced but the effect is relatively small for dust.
- Impact of increasing model horizontal resolution (4x) on dust direct radiative effect is about +11% (April) mainly through SW. This is comparable to other uncertainties such as aerosol optics, and with larger regional differences.