

Impact of Wildfires on Near Surface **Climate and GPP in E3SM**

Li Xu¹, James T. Randerson¹, Yang Chen¹, William J. Riley², Qing Zhu², Katherine Mackey¹, Natalie M. Mahowald³

E3SM Spring meeting, Westminster, CO, March 20, 2019

¹University of California, Irvine, ²Lawrence Berkeley National Laboratory, ³Cornell University.

Update 1: 20-year simulation with GFED4s fire aerosol emissions during 1997-2016

(Tg/yr)

Ē

Tsigaridis et al. 2014

Update 2: MISR smoke plume height during fire peak seasons

3

MDPI

remote sensing

Article

A Global Analysis of Wildfire Smoke Injection Heights Derived from Space-Based **Multi-Angle Imaging**

MariaVal Martin ^{1,†,*}, Ralph A. Kahn ^{2,†} and Mika G. Tosca ^{3,4}

Martin et al. 2018; Zhu et al., 2018

GFED4s Dry Matter Emission

Update 3: New strategy to amplify fire emissions in fire affected area during fire peak seasons

Fire affected area: sorted by top 1/3 of fire AOD

Update 4: Increase in atmospheric absorption with elevated emissions causes stronger cooling at surface

-0.05 uege	
have the second	
AND NO	
· · · · · · · · · · · · · · · · · · ·	

).05	degC	

and a series	1.5
and the second second	1
	0.7
	0.5
1 m on b	0.3
	0.1
	0
and the second	-0.1
	-0.3
the state	-0.5
	-0.7
	-1
in the second second	-1.5

Complex response of GPP to changed soil moisture (via precipitation) and diffusive light

Update 5: New prognostic fire model in E3SM V3

Fire Suppression

- Cattle density (FAO) Global soil wetness or VPD Fragmentation index - Road condition: gROADSv1 - Cropland cover: LUH2
 - Lake and River

Elevated trace gas and aerosol emissions