The Energy Exascale Earth System Modeling Project: Goals for Meeting

David C. Bader
E3SM Lead Principal Investigator and Council Chair
March 19, 2019
”They” said it couldn’t be done..
DOE said “Just Do It!!!!...
WE did it!!!!

The DOE E3SM coupled model version 1: Overview and evaluation at standard resolution

Jean-Christophe Golaz¹, Peter M. Caldwell¹, Luke P. Van Roeke⁵, Mark R. Petersen², Qi Tang¹, Jonathan D. Wolfe₂, Guta Abeshu³, Valentine Anantharaj⁴, Xylar S. Asay-Davis², David C. Bader¹, Sterling A. Baldwin¹, Gautam Bisht⁵, Peter A. Bogenschutz¹, Marcia Branstetter⁴, Michael A. Brunke⁶, Steven R. Brus², Susannah M. Burrows⁷, Philip J. Cameron-Smith¹, Aaron S. Donahue¹, Michael Deakin⁸,⁹, Richard C. Easter⁷, Katherine J. Evans⁴, Yan Feng¹⁰, Mark Flanner¹¹, James G. Foucar⁸, Jeremy G. Fyke²,¹², Brian M. Griffin¹³, Cécile Hannay¹⁴, Bryce E. Harrop⁷, Elizabeth C. Hunke², Robert L. Jacob¹⁰, Douglas W. Jacobsen², Nicole Jeffery², Philip W. Jones², Noel D. Keen⁵, Stephen A. Klein¹, Vincent E. Larson¹³, L. Ruby Leung⁷, Hong-Yi Li³, Wuyin Lin¹⁵, William H. Lipscomb¹⁴, Po-Lun Ma⁷, Sallil Mahajan⁴, Mathew E. Maltrud², Azamat Mametjanov¹⁰, Julie L. McClean¹⁶, Renata B. McCoy¹, Richard B. Neale¹⁴, Stephen F. Price², Yun Qian⁷, Philip J. Rasch⁷, J. E. Jack Reeves Eyre⁶, William J. Riley⁵, Todd D. Ringler¹⁷, Andrew F. Roberts², Erika L. Roesler⁸, Andrew G. Salinger³, Zeshawn Shaheen¹, Xiaoying Shi⁴, Balwinder Singh⁷, Jinyun Tang⁵, Mark A. Taylor⁸, Peter E. Thornton⁴, Adrian K. Turner², Milena Veneziani², Hui Wan⁷, Hallong Wang⁷, Shanlin Wang², Dean N. Williams¹, Philip J. Wolfram², Patrick H. Worley¹⁸, Shaocheng Xie¹, Yang Yang⁷, Jin-Ho Yoon¹⁹, Mark D. Zelinka¹, Charles S. Zender²⁰, Xubin Zeng⁶, Chengzhu Zhang¹, Kai Zhang⁷, Yuying Zhang¹, Xue Zheng¹, Tian Zhou⁷, Qing Zhu⁵
A Quick Review
“A DOE Model for the DOE Mission on DOE Computers”
Science and mission drives development and experimentation

- **Resolution** – weather-scale to convective scale-atmosphere and eddy-resolving ocean for simulation of multi-scale phenomena
- Utilize *next-generation disruptive computing* to enable high-throughput, high resolution simulations
- Extensive use of *ensembles* to quantify and bound uncertainty for *actionable predictions*. Even small reductions in uncertainty are useful in risk analysis.
- Coordinated efforts to *reduce biases* and *address mission questions*
Overlapping Development Cycle

- Two time horizons
 - Near term – v1 and v2 simulation campaigns and analysis
 - Intermediate term – developments for v3 and v4 models that are tested and functioning in the coupled v3 system in 5 years (both scientific and computational)

- Changed (and changing) computing landscape
 - Summit hybrid CPU-GPU design; 100+ PFLOP machine
 - NERSC9 – hybrid
 - Aurora ExaFLOP architecture just announced – hybrid
Phase 2 project structure

• Core activities
 – Run more like a “traditional” modeling center
 – v1 simulation campaign
 – Finalize v2 development, testing and simulation campaign
 – Performance optimization on current machines (Jones)
 – 5 groups – one for each science question, infrastructure (Jacob) and performance

• Next Generation Development for v3/v4 versions
 – Algorithms and Software
 – Cloud-Permitting Global Atmosphere
 – Atmospheric Physics
 – Land and Energy
Deliverables, Metrics and Roadmaps

• The project is evaluated
 – from delivering products
 – from documenting objective progress against metrics
• The plan to meet these objectives is in the roadmaps
• Reporting is everyone’s responsibility
Goals for meeting

• Project team cohesion (with or without alcohol)
• Synchronization (reality) check on current status
• Revision of plans and road maps
 – Project-wide and groups/sub-projects
 – Gaps and needs
 – Reallocation of effort