

# The Energy Exascale Earth System Modeling Project: Goals for Meeting

David C. Bader
E3SM Lead Principal Investigator and Council Chair
March 19, 2019





## "They" said it couldn't be done.. DOE said "Just Do It!!!!...







#### WE did it!!!!

### The DOE E3SM coupled model version 1: Overview and evaluation at standard resolution

Jean-Christophe Golaz<sup>1</sup>, Peter M. Caldwell<sup>1</sup>, Luke P. Van Roekel<sup>2</sup>, Mark R. Petersen<sup>2</sup>, Qi Tang<sup>1</sup>, Jonathan D. Wolfe<sup>2</sup>, Guta Abeshu<sup>3</sup>, Valentine Anantharaj<sup>4</sup>, Xylar S. Asay-Davis<sup>2</sup>, David C. Bader<sup>1</sup>, Sterling A. Baldwin<sup>1</sup>, Gautam Bisht<sup>5</sup>, Peter A. Bogenschutz<sup>1</sup>, Marcia Branstetter<sup>4</sup>, Michael A. Brunke<sup>6</sup>, Steven R. Brus<sup>2</sup>, Susannah M. Burrows<sup>7</sup>, Philip J. Cameron-Smith<sup>1</sup>, Aaron S. Donahue<sup>1</sup>, Michael Deakin<sup>8,9</sup>, Richard C. Easter<sup>7</sup>, Katherine J. Evans<sup>4</sup>, Yan Feng<sup>10</sup>, Mark Flanner<sup>11</sup>, James G. Foucar<sup>8</sup>, Jeremy G. Fyke<sup>2,12</sup>, Brian M. Griffin<sup>13</sup>, Cécile Hannay<sup>14</sup>, Bryce E. Harrop<sup>7</sup>, Elizabeth C. Hunke<sup>2</sup>, Robert L. Jacob<sup>10</sup>, Douglas W. Jacobsen<sup>2</sup>, Nicole Jeffery<sup>2</sup>, Philip W. Jones<sup>2</sup>, Noel D. Keen<sup>5</sup>, Stephen A. Klein<sup>1</sup>, Vincent E. Larson<sup>13</sup>, L. Ruby Leung<sup>7</sup>, Hong-Yi Li<sup>3</sup>, Wuvin Lin<sup>15</sup>, William H. Lipscomb<sup>14</sup>, Po-Lun Ma<sup>7</sup>, Salil Mahajan<sup>4</sup>, Mathew E. Maltrud<sup>2</sup>, Azamat Mametjanov<sup>10</sup>, Julie L. McClean<sup>16</sup>, Renata B. McCoy<sup>1</sup>, Richard B. Neale<sup>14</sup>, Stephen F. Price<sup>2</sup>, Yun Qian<sup>7</sup>, Philip J. Rasch<sup>7</sup>, J. E. Jack Reeves Eyre<sup>6</sup>, William J. Riley<sup>5</sup>, Todd D. Ringler<sup>17</sup>, Andrew F. Roberts<sup>2</sup>, Erika L. Roesler<sup>8</sup>, Andrew G. Salinger<sup>8</sup>, Zeshawn Shaheen<sup>1</sup>, Xiaoying Shi<sup>4</sup>, Balwinder Singh<sup>7</sup>, Jinyun Tang<sup>5</sup>, Mark A. Taylor<sup>8</sup>, Peter E. Thornton<sup>4</sup>, Adrian K. Turner<sup>2</sup>, Milena Veneziani<sup>2</sup>, Hui Wan<sup>7</sup>, Hailong Wang<sup>7</sup>, Shanlin Wang<sup>2</sup>, Dean N. Williams<sup>1</sup>, Philip J. Wolfram<sup>2</sup>, Patrick H. Worley<sup>18</sup>, Shaocheng Xie<sup>1</sup>, Yang Yang<sup>7</sup>, Jin-Ho Yoon<sup>19</sup>, Mark D. Zelinka<sup>1</sup>, Charles S. Zender<sup>20</sup>, Xubin Zeng<sup>6</sup>, Chengzhu Zhang<sup>1</sup>, Kai Zhang<sup>7</sup>, Yuying Zhang<sup>1</sup>, Xue Zheng<sup>1</sup>, Tian Zhou<sup>7</sup>, Oing Zhu<sup>5</sup>





### **A Quick Review**





# "A DOE Model for the DOE Mission on DOE Computers"

DOE Energy Questions

Exascale Computing



Earth System Modeling





## Science and mission drives development and experimentation

- Resolution weather-scale to convective scaleatmosphere and eddy-resolving ocean for simulation of multi-scale phenomena
- Utilize next-generation disruptive computing to enable high-throughput, high resolution simulations
- Extensive use of ensembles to quantify and bound uncertainty for actionable predictions. Even small reductions in uncertainty are useful in risk analysis.
- Coordinated efforts to reduce biases and address mission questions





#### **Overlapping Development Cycle**

- Two time horizons
  - Near term v1 and v2 simulation campaigns and analysis
  - Intermediate term developments for v3 and v4 models that are tested and functioning in the coupled v3 system in 5 years (both scientific and computational)
- Changed (and changing) computing landscape
  - Summit hybrid CPU-GPU design; 100+ PFLOP machine
  - NERSC9 hybrid
  - Aurora ExaFLOP architecture just announced hybrid





### Phase 2 project structure

- Core activities
  - Run more like a "traditional" modeling center
  - v1 simulation campaign
  - Finalize v2 development, testing and simulation campaign
  - Performance optimization on current machines (Jones)
  - 5 groups one for each science question, infrastructure (Jacob) and performance
- Next Generation Development for v3/v4 versions
  - Algorithms and Software
  - Cloud-Permitting Global Atmosphere
  - Atmospheric Physics
  - Land and Energy





### Deliverables, Metrics and Roadmaps

- The project is evaluated
  - from delivering products
  - from documenting objective progress against metrics
- The plan to meet these objectives is in the roadmaps
- Reporting is everyone's responsibility





### Goals for meeting

- Project team cohesion (with or without alcohol)
- Synchronization (reality) check on current status
- Revision of plans and road maps
  - Project-wide and groups/sub-projects
  - Gaps and needs
  - Reallocation of effort



