
Aaron Donahue and Luca Bertagna
E3SM All-Hands, March 19-21, 2019

Design of a Next-Generation Atmospheric Driver
for SCREAM

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344 IM Release Number LLNL-PRES-769384

What is the Atmospheric Driver?
• Controls the coupling of atmospheric

processes.
• Controls the passage of information

between atmospheric processes.
• Controls the import/export of data

from the atmosphere to the other
model components.

• Interfaces with the input/output
routines.

Component
Coupler,

PIO

SHOC

RRTMGP

SE-Dycore

P3

AD

Current E3SM paradigm
ATM Driver

Import/export fluxes
from/to component

coupler
cam_runX

phys_runX

physics seq. 1

physics 1a physics 1b...

physics seq. 2

physics 2a physics 2b...

stepon_runX

phys/dyn
coupling dynamics

• Actual atmospheric processes are buried
beneath multiples layers of abstraction
• makes changing process order, coupling

approach, or adding new
parameterizations difficult

• makes the run sequence confusing

• Different processes require different
information, limiting code reuse:
• Dynamics needs both states and

tendencies from physics.
• Physics receives only the state from

dynamics.
• Only tendencies are passed

between parameterizations.

SCREAM Atmospheric Driver

ATM
Driver

Import/export fluxes
from/to component

coupler

SHOC P3 RRTMGP SE-Dycore

• Uses a generic atmospheric process class for both
dynamics and physics which is responsible for:
• The import and export of surface fluxes
• Interfacing with the set of atmospheric processes

• This simpler paradigm allows for:
• Straightforward changes to process order
• Switching between parallel & sequential splitting
• Easy addition of new parameterizations

• Enables consistent passage of information between
processes:
• Only the model state will be passed in and out of

atmospheric processes

Atmospheric Process Class
• Provides consistent infrastructure for all

processes
• Each process has init, run, and finalize

methods
• Parameterization portability is enabled

by using an ‘interface’ layer to convert
input/output between AD- and
parameterization-specific data structures

Atmospheric_Process_X

Initialization Run

Interface

Parameterization

Finalize

Atmospheric Process Class
• Provides consistent infrastructure for all

processes
• Each process has init, run, and finalize

methods
• Parameterization portability is enabled

by using an ‘interface’ layer to convert
input/output between AD- and
parameterization-specific data structures

Atmospheric_Process_X

Initialization Run

Interface

Parameterization

Finalize

How data is passed around currently:

physics_X

Initialization Run

Pre-amble Main
Routine

Subroutine
1

Subroutine
...

Post-
process

Finalize

Physics Buffer
(PBUF)

ATM Driver

How data is passed around currently

physics_X

Initialization Run

Pre-amble Main
Routine

Subroutine
1

Subroutine
...

Post-
process

Finalize

ATM Driver

Physics Buffer
(PBUF)

pbuf_add

pbuf_get

phys_tend

phys_state

Field Manager (FM)
• Like PBUF, FM will associate variables with pointers to memory.

• FM will handle all AD variables, including prognostic state variables.
– Only the AD layer will be able to change prognostic state variables.

• FM will only be accessible by initialization and parameterization-interface layers.
– As a result, all input/output to parameterizations must be passed as input and/or output.

• FM will include new tools to:
– track where variables are used

– identify where variables are changed

Atmospheric_Process_X

Initialization Run

Interface

Parameterization

Finalize

How data will be passed around in SCREAM FM

Field Manager
(FM)

fm_get_pointer

fm_new_field

state*

ATM Driver

state

Atmospheric_Process_X

Initialization Run

Interface

Parameterization

Finalize

ATM Driver

• Simpler paradigm ⇒ easier to see which
variables are being used where.

• Parameterization code is insulated from the
SCREAM specific-infrastructure for:
– unit testing
– portability

Field Manager
(FM)

How data will be passed around in SCREAM FM

Accomplishments and Conclusions
• Written SCREAM-AD design document and will submit for external review

shortly.
– Available on Confluence:

https://acme-climate.atlassian.net/wiki/spaces/NGDNA/pages/907378934/SCREAM-
AD+Design+Docs

• Ongoing C++ development of SCREAM-AD code.
• The SCREAM-AD maintains the good properties of E3SM’s driver logic but

simplifies and improves things where possible.
• Our atmospheric process class streamlines the interface between the

atmosphere model driver and the individual processes.
• A new field manager class improves on the current physics buffer structure by

– simplifying the interface between processes and variables.
– Insulating parameterization code from model infrastructure, facilitating unit tests and

portability.

