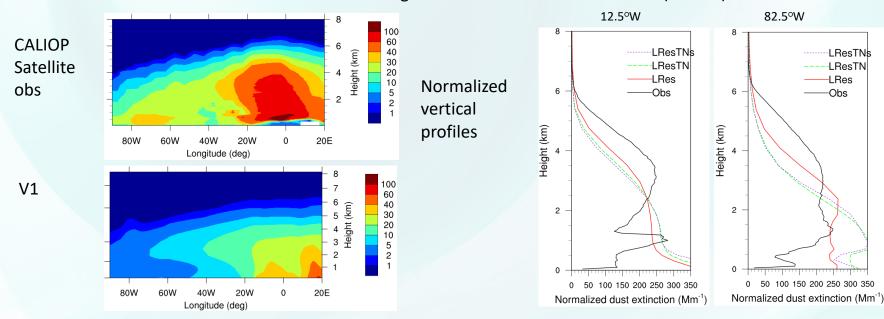

Improved Dust Aerosol Physics for V2 Argonne National Laboratory

Issues in V1: (1) fine-size bias; (2) too absorbing in SW; (3) deposition is too high These biases -> direct radiative effect (DRE) by dust is -0.08 Wm⁻², warmer than the multi-model median



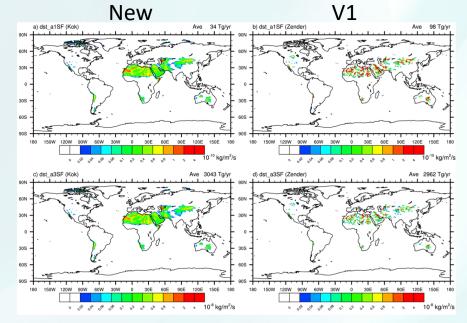
Feature	What improvement for V2 (status)	Readiness
Size distribution at emission (same as in CAM6)	 More coarse particles (evaluated) -> larger LW warming Water cycle responses (major changes not expected) 	ready
Shortwave refractive index	 Less SW absorption (evaluated) -> larger SW cooling Net TOA DRE = -0.4 Wm⁻² vs -0.08 Wm⁻² with V1 	ready

Improved Dust Aerosol Physics for V2 Argonne National Laboratory

Dust plume height is underestimated -> underestimation of dust longwave warming

JJA: Dust Extinction averaged over North Africa and Atlantic (0-35°N)

Feature	What improvement for V2 (status)	Readiness
Emission height	 Address the over-deposition bias (testing) Higher dust layer Larger LW warming from 0.1 Wm⁻² ->Water cycle responses 	1-3 months


Improved Dust Aerosol Physics for V2

Yan Feng Argonne National Laboratory

Dust emission flux

$$\phi_d = C_{tune} \delta F_d$$

	V1	New
Soil erodibility	$S_{(lat, \ lon)}$ Empirical map	Calculated in $F_{d}^{}$
Flux per eroding area per time	$F_d^{}$ Depends on soil threshold velocity	F_d Strongly depends on soil threshold velocity (soil moisture; aggregation)
Climate regime	Current	Sensitive to predicted soil state
High-lat dust	little	Comparable to recent obs

Feature	What improvement for V2 (status)	Readiness
New emission scheme (Kok et al., 2014)	 Time-varying soil erodibility (testing)-> dust aerosol climate sensitivity High-latitude dust -> Arctic IN source Enhanced climate-dust feedback in coupled runs (unknown) 	3-6 months

