Task Placement for Reduced Communication Costs

J. Austin Ellis and Karen Devine
Sandia National Laboratories
Albuquerque, NM

E3SM All Hands Meeting
20 November 2019
Objective: Minimize distance messages must travel by “mapping” frequently communicating MPI tasks to nearby nodes in allocation.

Contributions:

New dragonfly task placement algorithm inside Trilinos' Zoltan2 package.
- Use high dimensional coordinate transformation to represent all-to-all connections
- Use coordinate stretching to match bandwidths and common congestion.

Added new capabilities to Trilinos Zoltan2’s Multi-Jagged(MJ) geometric coordinate partitioner.
- Will compute a nonuniform partitioning based on a user provided distribution
- Ensures the “group” dimension is fully partitioned first
Preliminary Numerical Results from Theta

- **Test Case:** ALCF’s Theta machine, HOMME v1 ne120 benchmark, 16 ranks per node
- Geometric task placement increases task locality in the network, decreasing distances messages must travel
- Weighted hops decreases by **up to 20%**
- Observed decreased runtime variability (50% on Cori, harder to quantify on Theta)

Near strong scaling limit for ne120
Future Work: Fat Tree Task Placement on Summit

- Obtain Summit node floor location using gethostname(): [A-H][01-36]n[01-18]
- Transform floor coordinates to network switch “neighborhoods”
 - Ex. All nodes in A01-A18 connected in a 3-hop neighborhood, A19-A36 are a separate 3-hop neighborhood
- Use recursive 2-level nonuniform MJ partitioning (L1 → L2)
- Targeting full system scale runs for HOMMEXX
Thank you!